中国古代数学之巅峰是宋代的《数书九章》

中国古代数学之巅峰是宋代的《数书九章》。

《数书九章》,是宋代人秦九韶勤奋学习、苦心钻研和多年积累的数学成就的结晶,是堪与数学名著《九章算术》相媲美的。这部著作,南宋时称为《数学大略》或《数术大略》,明《永乐大典》和清《四库全书》皆题称《数学九章》。明季常熟赵氏脉望馆藏有另一抄本,万历时赵琦美为其撰写跋文始称《数书九章》。后来清道光时按赵抄本校刻的《宜稼堂丛书》本流传较广,遂成为现今的通称。

《数书九章》全书共18卷,81题,分为9类,每类9题,主要内容是:

大衍类:一次同余组的解法;
天时类:历法推算、雨雪量的计算;
田域类:土地面积;
测望类:勾股、重差等测量问题;
赋役类:田赋、户税;
钱谷类:征购米粮及仓储容积;
营建类:建筑工程;
军旅类:兵营布置和军需供应;
市易类:商品交易和利息计算。
每题答案之后都有“术”说明解题方法,“术”后有“草”说明演算步骤,有的题目还画有图。《数书九章》中的两项最重要的成就是正负开方术(高次方程数值解法)和大衍求一术(一次同余组解法)。

在数学发展史上,古典代数学的中心课题是方程论。中国古代的方程论,不论是现代意义下的开方,还是解一般的高于二次的一元方程都被称为开方。从《周髀算经》、《九章算术》,到5世纪的祖冲之和7世纪的王孝通,已经解决了开平方、开立方,以及二次三项方程和正系数三次方程求正根问题。11世纪,贾宪又创造了一种新的开方法——增乘开方法,通过随乘随加导出减根方程,逐步求出正系数高次方程的正根。

12世纪,数学家刘益提出“正负开方术”,并突破了方程系数全都为正的限制。但刘益的方法并不是增乘开方法。秦九韶在前人工作的基础上,把以增乘开方法为主体的高次方程数值解法发展到十分完备的程度。他的方程系数可正可负,可为分数,也可为小数,在有理数范围内没有限制,但规定常数项总为负。《数书九章》81个问题中,用方程来解的有21个,共列出了26个方程,其中二次方程20个,三次1个,四次4个,十次1个,其解法大都有详草。从其随乘随加的具体运算过程可以看出,秦九韶提出的高次方程数值解法可以毫不困难地转化为计算机程序。

《数书九章》除了正负开方术和大衍求一术这两项重要成就外,还有不少其他方面的成就。如在代数学方面,改进了线性方程组的解法,普遍应用互乘相消法代替传统的直除法;在几何学方面,提出已知三角形三边之长求其面积的等价于海伦公式的“三斜求积术”:A=14ababc222222-+-.è…÷é.êêù.úú,将《九章算术》与《海岛算经》中的勾股测望之术发扬光大,等等。《数书九章》的内容非常丰富,从中我们不仅可以找到数学和天文历法乃至雨雪量等方面的珍贵资料,而且还可以了解到南宋时期户口增长、耕地扩展、赋税、利贷、度量衡以及货币流通、海外贸易等社会经济领域的真实情况。

秦九韶还讨论了“投胎”、“换骨”、“玲珑”、“同体连枝”等特殊情形,并将其广泛应用于面积、体积、测量等方面的实际问题。

在西方,关于高次方程数值解法的探讨,经历了漫长的历史过程,直到1840年,意大利数学家鲁菲尼(P.Ruffini,1765—1822)才创立了一种逐次近似法解决数字高次方程无理根的近似值问题,而1819年英国数学家霍纳(W.G.Horner,1786—1837)在英国皇家学会发表的论文“用连续逼近法解任何次数字方程的新方法”中,才提出与增乘开方法演算步骤相同的算法,后被称为“霍纳法”。秦九韶的成就要比鲁菲尼和霍纳早五六百年。

如果说《九章算术》标志着中国古代数学理论的形成,那么《数书九章》则标志着中国古代数学之顶峰,其高次方程数值解法以及一次同余组解法亦代表了中世纪世界数学发展的主流与最高水平。美国科学史家萨顿(Sarton,1884—1956)因此称秦九韶是“他那个民族、他那个时代,并且确实也是所有时代最伟大的数学家之一”。

秦九韶(1202—约1261),字道古,普州安岳(今属四川)人,祖籍鲁郡。父秦季槱,字宏父,绍熙四年(1193)进士。嘉定十二年(1219),秦季槱任巴州(今四川巴中)守。是年三月,兴元(今陕西汉中)军士张福、莫简等发动兵变,入川后夺取利州(今广元)、阆州(今阆中)、果州(今南充)、遂宁(今遂宁)和普州(今安岳),并进犯巴州。秦季槱弃城而走。朝廷命沔州都统张威引兵镇压。年仅18岁的秦九韶“在乡里为义兵首”,参加张威军的平乱之战。不久,秦季槱携全家辗转抵达当时的京师临安(今杭州)。

嘉定十五年(1222),秦季槱任工部郎中,十七年,除秘书少监。宝庆元年(1225)正月,兼任国史院编修官、实录院检讨官。工部掌管营建,而秘书省则掌管图书,其下属机构设有太史局。因此,天资聪颖、求知若渴的秦九韶有机会阅读大量典籍,熟悉建筑、修造、治河等方面的土木工程知识,并向他父亲的属官中负责测验天文、考定历法的学者们学习天文历法知识。他后来在《数书九章》序中说“早岁侍亲中都,因得访习于太史”,即指这段时间的事。

秦九韶又曾向“隐君子”学习数学。他还向著名词人李刘学习骈骊诗词。通过这一时期的学习,秦九韶的学识日趋渊博。周密在《癸辛杂识续集》中称他“性极机巧,星象、音律、算术,以至营造等事,无不精究”,“游戏、毬、马、弓、剑,莫不能知”。

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注